GIF Progress & Plans

Tokyo, Japan September 20, 2002

Generation IV Initiative, Roadmap, and Energy Applications

Essential Role of Nuclear Energy

- •As population grows and standard of living increases
 - •competition for limited energy resources will increase
 - •endangering energy supply stability

Generation IV International Forum

- Development of one or more nuclear energy systems which:
 - are deployable by 2030
 - offer significant advances in
 - » sustainability
 - » safety and reliability
 - » proliferation and physical protection
 - » economics
 - can compete in various markets
 - offer various energy applications: electricity, hydrogen, clean water, and heat

Nearly 100 technical experts contributing to the R&D planning

Energy Applications

•Generation IV concepts support multiple applications in differing markets

Generation IV Concept Selections

Rollup of Criteria to Goals

Most Promising Concepts

Road Toward Concepts Selection

Roadmap Activities

- Initial Request for Concepts: over 100: 2000 Spring
- Screening for Potential: ~30 concept sets were organized and considered : 2001 Fall
- Final Screening: 20 concept sets were refined and evaluated in considerable detail: 2002 Spring

Generation IV International Forum

- Review Roadmap numerical evaluation as a primary input to selection
- General agreements of the GIF members for the six systems based on discussions in May, Paris and July, Rio de Janeiro

Generation IV Systems: Request for Information

Generation IV Systems

	Acronym	Coolant	Neutron
Gas-Cooled Fast Reactor	GFR	Gas	Fast
Lead-Cooled Fast Reactor	LFR	Liquid Metal	Fast
Molten Salt Reactor	MSR	Molten Salt	Thermal
Sodium-Cooled Fast Reactor	SFR	Liquid Metal	Fast
Supercritical Water-Cooled Reactor	SCWR	Water	Thermal – (Fast)
Very High Temperature Reactor	VHTR	Gas	Thermal

- •Waste Minimization through Actinide Consumption
- Proliferation Resistant

Passive safety

•Proliferation-resistance

- Regional fuel processing
- •Removable, long-life core

- •Waste Minimization through Actinide Consumption
- Proliferation Resistant

- Waste Minimization through Actinide Consumption
- Optimizes Resource Utilization

• Excellent economics

- •High efficiency
- Simplified plant

OR-GASSINIT-ON

- Very high temperature leads to:
 - High thermal efficiency
 - •Ideal for hydrogen production
- Inherent passive safety

INTD Criteria and Selections

- Need to recognize systems with potential that are closer to deployment than Generation IV systems
- Criteria for selection
 - Technology is deployable by 2015
 - Performance equal or better than current Advanced Light Water Reactor designs
- Some INTD advances may support Generation IV development and vice versa

International Near-Term Deployment

ABWR II

ACR-700

AP600

AP1000

APR1400

APWR+

CAREM

EPR

ESBWR

GT-MHR

HC-BWR

IMR

IRIS

PBMR

SMART

SWR-1000

Conduct of R&D Collaborations

Organization and Conduct of R&D Collaborations

- General objective: bring the selected Gen IV concepts to technical maturity.
- Mainly relies on a limited number of major key technologies to be developed and/or proven; this objective will require more R&D efforts than concept integration, at least at the beginning.
- Typical phases for Gen IV R&D: viability, performance, demonstration & optimization.
- R&D on several concepts must be undertaken at the same time in order to succeed with certainty; important to share R&D efforts.

Organization and conduct of R&D collaborations

- Proposed organization for conducting Gen IV R&D combines two aspects:
 - Specific R&D Projects, for developing and/or proving key technologies; conducted by funding GIF countries, owning the property of the results.
 - Continuous concept integration and assessment, by concept technical committees, composed of GIF countries representatives, and reporting to the GIF Policy Group.
- Implementation of related organization and agreements, and initiate projects, by September 2003

Audiences

- •Primary: those who can contribute to developing Generation IV designs
 - Industry
 - Researchers
 - Regulators
 - •Etc.
- •Secondary: opinion-formers whose support may be important
 - Public
 - Environmental Groups
 - Media
 - •Etc.

Objectives and Key Messages

- Increase awareness of GIF missions
 - •Need for advanced nuclear systems to help meet growth in energy needs
 - •Generation IV-enhancements in safety, security, sustainability, and efficiency
- •Engage contributors to development work -how GIF works, plans, and sets milestones
- •Respond to questions/interests/concerns by wider public-good quality information, readily accessible

Strategy and Working Methods

- GIF Secretariat
 - Central web site for public access
 - •Broad timetable for announcements, etc.
 - "Core script" for communiqués
- Member countries and other stakeholders
 - Linked web sites
 - Locally tailored communiqués in own languages
 - Dialogues with industry, research bodies, etc.
 - Dialogues with interested media, environmental groups, etc.